
Probing the tails of the ground-state energy distribution for the directed polymer
in a random medium of dimension d=1,2 ,3 via a Monte Carlo

procedure in the disorder

Cécile Monthus and Thomas Garel
Service de Physique Théorique, CEA/DSM/SPhT, Unité de recherche associée au CNRS, 91191 Gif-sur-Yvette cedex, France

�Received 18 July 2006; published 13 November 2006�

In order to probe with high precision the tails of the ground-state energy distribution of disordered spin
systems, Körner, Katzgraber, and Hartmann have recently proposed an importance-sampling Monte Carlo
Markov chain in the disorder. In this paper, we combine their Monte Carlo procedure in the disorder with exact
transfer matrix calculations in each sample to measure the negative tail of ground-state energy distribution
Pd�E0� for the directed polymer in a random medium of dimension d=1,2 ,3. In d=1, we check the validity of
the algorithm by a direct comparison with the exact result, namely, the Tracy-Widom distribution. In dimen-
sions d=2 and d=3, we measure the negative tail up to ten standard deviations, which correspond to prob-
abilities of order Pd�E0��10−22. Our results are in agreement with Zhang’s argument, stating that the negative
tail exponent ��d� of the asymptotic behavior ln Pd�E0��−�E0���d� as E0→−� is directly related to the fluc-
tuation exponent ��d� �which governs the fluctuations �E0�L��L��d� of the ground-state energy E0 for poly-
mers of length L� via the simple formula ��d�=1/ �1−��d��. Throughout the paper, we comment on the
similarities and differences with spin glasses.

DOI: 10.1103/PhysRevE.74.051109 PACS number�s�: 02.50.Ng, 05.40.�a

I. INTRODUCTION

Since the ground-state energy E0 of a disordered sample is
the minimal energy among the energies of all possible con-
figurations, the study of its distribution belongs to the field of
extreme value statistics. Whereas the case of independent
random variables is well classified in three universality
classes �1�, the problem for the correlated energies within a
disordered sample remains open and has been the subject of
many recent studies. The interest lies in both �i� the scaling
behavior of the average E0

av�L� and the standard deviation
�E0�L� with the size L and �ii� the asymptotic distribution
P�x� of the rescaled variable x= �E0−E0

av�L�� /�E0�L� in the
limit L→�

PL�E0� �
L→�

1

�E0�L�
P�x =

E0 − E0
av�L�

�E0�L�
	 . �1�

We first recall what is known in the field of spin glasses,
before focusing on the directed polymer model.

A. Ground-state energy distribution in spin glasses

For spin glasses in dimension d, let us consider samples
containing N=Ld, where L denotes the linear size, and follow
the notations of Ref. �2�. The “shift exponent” �s governs the
correction to extensivity of the averaged value

E0
av�L� � Lde0 + L�se1 + ¯ = Ne0 + N�s/de1 + ¯ . �2�

Within the droplet theory �3,4�, this shift exponent �s coin-
cides with the domain wall exponent �DW and with the drop-
let exponent � of low energy excitations. The “fluctuation
exponent” � f governs the growth of the standard deviation

�E0�L� � L�fe2 = N�f/de2. �3�

In any finite dimension d, it has been proven that the fluc-
tuation exponent is � f =d /2 �5�. Accordingly, the rescaled

distribution P�x� of Eq. �1� was numerically found to be
Gaussian in d=2 and d=3 �2�, suggesting some central limit
theorem. On the contrary, in mean-field spin glasses, the
width does not grow as N1/2 and the distribution is not
Gaussian. In the random energy model �6�, the width remains
finite �E0�N��O�1� and the distribution is the Gumbel dis-
tribution �7�. In the Sherrington-Kirpatrick model, the width
grows as �E0�N��N1/4 according to some theoretical argu-
ments �2,8� and numerics �2,9�, and the distribution is clearly
asymmetric �9,10�. Finally for the one-dimensional disor-
dered spin chain with power-law interactions that allows one
to interpolate between effectively finite-dimensional and
mean-field models, the transition between short-range and
infinite-range behaviors corresponds to the Gaussian–non-
Gaussian transition for the ground-state energy �11�.

B. Ground-state energy for the directed polymer

The directed polymer model in 1+d dimensions is defined
by the following recursion for the partition function:

ZL+1,T�r�� = 

j=1

2d

e−��L�r�+e� j,r��ZL,T�r� + e� j� , �4�

where e� j, 1� j�2d are the unit vectors linking a vertex and
its 2d neighbors on the d-dimensional hypercubic lattice. The
bond energies �L�r�+e� j ,r�� are random independent variables,
drawn with the Gaussian distribution

	��� =
1

�2

e−�2/2. �5�

The full partition function ZL�T� at temperature T=1/� for a
polymer of length L
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ZL,T = 

r�

ZL,T�r�� �6�

is simply the sum over all possible end points r� that can be
reached in “time” L by a random walk on the hypercubic
lattice starting at the origin at time L=0, i.e., the transfer
matrix �Eq. �4�� is iterated from the initial condition
ZL=0,T�r��=�r�,0�. The free-energy F�L ,T� and the energy
E�L ,T� are then defined by the usual definitions F�L ,T�=
−T ln ZL,T and E�L ,T�=−�� ln ZL,T.

This model has attracted a lot of attention for two main
reasons: �i� It is directly related to nonequilibrium properties
of growth models �12� and �ii� as a disordered system, it
presents some similarities with the spin-glass physics
�3,12–15�. At low temperature, there exists a disorder domi-
nated phase, where the order parameter is an “overlap”
�13,15�.

The probability distribution of the ground-state energy
E0�L� is expected to follow the scaling form of Eq. �1�. In
contrast with spin glasses where the shift exponent �s �Eq.
�2�� and the fluctuation exponent � f �Eq. �3�� are different,
there is a single exponent ��d� that governs both the correc-
tion to extensivity of the average E0

av�L� and the width
�E0�L�

E0
av�L� � Le0 + L��d�e1 + ¯ , �7�

�E0�L� � L��d�e2 + ¯ . �8�

This exponent also governs the statistics of low excitations
within the droplet theory �3�, as confirmed numerically �16�.
This exponent is exactly known in one dimension �17–20�

��d = 1� = 1/3 �9�

and has been numerically measured in dimensions d
=2,3 ,4 ,5 �16,22–25�

��d = 2� � 0.244, �10�

��d = 3� � 0.186. �11�

For the mean-field version on the Cayley tree, the exponent
vanishes ��d=��=0 �13,26�, with a width of order O�1� for
the probability distribution, but with a nonrandom O�ln L�
correction to the extensive term e0L in the averaged value
�13�.

The rescaled distribution Pd is exactly known in d=1 and
is related to Tracy-Widom distributions of the largest eigen-
value of random matrices ensembles �19–21�. On the Cayley
tree, the rescaled distribution was found to be nonuniversal
and to depend on the disorder distribution �26�.

C. Numerical measure of the ground-state energy distribution

The numerical measure of the ground-state energy distri-
bution is usually done by a simple sampling procedure,
where the histogram of the energies of independent samples
are collected. However, recently, Körner, Katzgraber, and
Hartmann �10� have proposed an importance-sampling
Monte Carlo algorithm in the disorder, which allows one to

measure much more precisely the tails of the distribution. In
the case of the Sherrington-Kirkpatrick model of spin
glasses, this procedure was used to measure the negative tail
on systems of size N�128 �10� up to x�−15 corresponding
to probabilities P�x��10−18 �see Eq. �1��, whereas the
simple sampling procedure cannot go beyond x�−5 corre-
sponding to P�x��10−4 �9�.

For the directed polymer in dimensions d=2 and d=3,
the rescaled distribution Pd has been numerically measured
via simple sampling in Ref. �27� with results in the region
x�−5. In this paper, we use the importance-sampling algo-
rithm recently proposed in Ref. �10� to measure precisely the
negative tail of the probability distribution up to x�−10.

The paper is organized as follows. In Sec. II, we recall
Zhang’s argument �12� that relates the decay of the rescaled
distribution Pd to the fluctuation exponent � f. In Sec. III, we
describe the Monte Carlo procedure in the disorder proposed
in Ref. �10� and mention the specific choices for the appli-
cation to the directed polymer model. In Sec. IV, we show
the validity of the procedure in d=1 via the direct compari-
son with the exactly known distribution �Tracy-Widom�. Fi-
nally in Secs. V and VI, we present our results for d=2 and
d=3, respectively. We present our conclusions in Sec. VII.

II. ZHANG’S ARGUMENT FOR THE NEGATIVE
TAIL EXPONENT

A. Distribution of the free energy
in the low-temperature phase

According to the droplet theory �3�, the whole low-
temperature phase 0
T
Tc is governed by a zero-
temperature fixed point. In particular, at T
Tc, the droplet
exponent ��d� governs the width �F�L ,T� and the correction
to extensivity of the average Fav�L ,T�

�F�L,T� � L��d�f2�T� + ¯ , �12�

Fav�L,T� � Lf0�T� + L��d�f1�T� + ¯ �13�

and the rescaled probability distribution of the free energy
coincides with the rescaled distribution Pd describing the
ground-state energy distribution �1�

Pd�F,L,T� �
1

�F�L,T�
Pd�x =

F − Fav�L,T�
�F�L,T� 	 �14�

as recently checked numerically using simple sampling �28�.

B. Zhang’s argument for the directed polymer

In finite dimensions d�1, the rescaled distribution Pd is
not known but there exists a simple argument due to Zhang
�12� that allows one to determine the exponent � of the nega-
tive tail of the free-energy distribution

Pd�x → − �� � e−c�x���d�
. �15�

If ��d��0, the moments of the partition function can be
evaluated by the saddle-point method, with a saddle value F*

lying in the negative tail �15�
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ZL
n =� dFPL�F,L�e−n�F �� dFe−c��F�/L��d����d�

e−n�F

� eb�n�L��d���d�/���d�−1�
, �16�

where b�n� is the prefactor depending on n, but here we
focus on the dependence in L. Since for positive integer n,
these moments of the partition function can be formulated in
terms of the iteration of some transfer matrix, they have to
diverge exponentially in L with some Lyapunov exponent.
As a consequence, the exponent ��d� of the negative tail �15�
is not a free parameter, but is fixed by the value of the fluc-
tuation exponent

��d� =
1

1 − ��d�
. �17�

In dimension d=1 where the droplet exponent is exactly
known ��d=1�=1/3 �Eq. �9��, this yields the negative tail
exponent

��d = 1� =
3

2
�18�

in agreement with the exact Tracy-Widom distributions
�19–21�. In dimensions d=2 and d=3, the numerical esti-
mates of the droplet exponents �Eq. �11�� yield the following
predictions:

��d = 2� � 1.32,

��d = 3� � 1.23. �19�

These predictions have been tested numerically in Ref. �27�
using simple sampling that do not allow one to have data far
in the tails. In the following, we will use the importance
sampling Monte Carlo method in the disorder to probe the
negative tail more precisely.

C. Zhang’s argument for spin glasses

To the best of our knowledge, Zhang’s argument seems to
be applied only in the context of directed polymers �12�,
whereas it can be applied for other kinds of disordered sys-
tems since it is only based on a scaling argument within a
saddle-point approximation in the large L limit �Eq. �16��. It
is thus interesting to describe now its implications in the field
of spin glasses.

For spin models in finite dimensions, the fluctuations of
free energies over the samples scale instead as

��FL�samples � Ld/2 �20�

at any temperature as proven in Ref. �5�. This scaling simply
reflects the central-limit fluctuations of the Ld disorder vari-
ables defining the sample. �The directed polymer escapes
from these normal fluctuations because it is a one-
dimensional path living in a 1+d disordered sample: each
configuration of the polymer only sees L random variables
among the L1+d disorder variables that define the sample, and
the polymer can “choose” the random variables it sees.�

Repeating Zhang’s argument in this case �20� yields for
the negative tail exponent ��d�=2. This is in agreement with

the recent numerical studies �2,11� that find a Gaussian dis-
tribution in finite dimensions and in the one dimensional
Ising spin glass with long range interactions in the non-
mean-field regime.

On the contrary, for the Sherrington-Kirkpatrick model
�2,9,10�, the probability distribution of the ground state is
found to be asymmetric, and has been fitted with generalized
Gumbel distribution �9,10�. However, if one repeats Zhang’s
argument for the SK model with the measured fluctuation
exponent � f �0.235 �9� for the width �E0�N��N�f, one ob-
tains the negative tail exponent

�SK =
1

1 − � f
� 1.3. �21�

If the value of the fluctuation exponent is exactly � f =1/4 as
suggested by some theoretical arguments �2,8�, the negative
tail exponent would be �SK=4/3.

This could explain why the fit with generalized Gumbel
distributions whose negative tail is a simple exponential
e−m�x� with exponent �=1 and coefficient m leads to increas-
ing effective values of m when the range over which the tail
is measured grows: the fit with simple scaling data on x�
−6 leads to m�6 �9�, whereas the importance-scaling data
on x�−15 leads to a completely different estimate m�11
�10�.

III. DESCRIPTION OF THE IMPORTANCE-SAMPLING
MONTE CARLO ALGORITHM IN THE DISORDER

In Ref. �10�, a procedure based on an importance-
sampling Monte Carlo algorithm in the disorder was pro-
posed to probe with high precision the tails of the ground-
state energy distribution of disordered systems, and was
applied for the Sherrington-Kirpatrick mean-field Ising spin
glass, where probabilities up to 10−18 could be measured. In
this section, we summarize their method which can be di-
vided in three steps. For each step we mention the specific
choices we have made to apply it to the directed polymer
model.

A. Simple sampling

A disorder configuration will be denoted by D, and its
ground-state energy E�D�. For the directed polymer, the
ground-state energy can be computed via the transfer matrix.
A simple sampling numerical estimation Psimple�E� of the
ground-state energy distribution P�E� consists in drawing ns

independent disordered samples D1 , . . . ,Dns
, in computing

the corresponding ground-state energies E�D1� , . . . ,E�Dns
�,

and in constructing the histogram

Psimple�E� =
1

ns


i=1

ns

�„E − E�Di�… . �22�

This histogram is very useful to measure the distribution
P�E� where P�E��

1
ns

, but gives no information on the tails
where P�E�


1
ns

, since no events are found.
As an example, we show in Fig. 1 the results we have

obtained recently via simple sampling for d=1,2 ,3, respec-
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tively �16�: whereas the core of the distribution is well mea-
sured, the tails suffer from statistic fluctuations as soon as the
probability becomes too small. Moreover, if one chooses to
make the same CPU effort on all sizes, the number of
samples rapidly decays with the size L, so that the data for
the tails are less and less precise as L grows. Since one is
interested into the asymptotic regime L→�, the correct mea-
sure of the tails quickly becomes intractable within the
simple sampling procedure.

This is why a correct measure of the tails requires the use
of some importance sampling, as stressed in Ref. �10�. How-
ever, the simple sampling study is the first necessary step
within the present method, for three reasons.

�i� The simple sampling results are needed to construct the
guiding function of the importance sampling measure �10� as
described below.

�ii� The simple sampling results give accurate results for
the average value E0

av�L� and the standard deviation �E0�L�,
that do not have to be measured via importance sampling
�10�. In particular, this allows one to work on a finite box
�xmin,xmax� for the rescaled variable �1�, and to choose freely
the boundaries of the box, for instance, xmax=−1 to concen-
trate on the negative tail, as will be done below for the di-
rected polymer.

�iii� Finally, the simple sampling results allow one to
check the validity of the importance-sampling measures on
the core of the distribution where the simple sampling results
are sufficiently precise.

B. Construction of a guiding function G„E… from the simple
sampling result Psimple„E…

The simple sampling result Psimple�E� exists in the range
in E where Psimple�E��1/ns, whereas the guiding function
G�E� needed for the importance sampling below has to be
defined in the tails where Psimple�E�
1/ns. The guiding
function G�E� should be in some sense the “best” extrapola-
tion of the data Psimple�E�. The proposal of Ref. �10� is to
define G�E� as the best fit of Psimple�E� within the one pa-
rameter family of generalized Gumbel distribution gm�x�,
which reads for the normalization conditions 
x�=0 and

x2�=1

gm�x� �
1

��m�
mm

��m�
�e�x−��m��/��m�−e�x−��m��/��m�

�m, �23�

where ��m�= 1
����m�/��m�−����m�/��m��2 and ��m�=−��m�� ���m�

��m�

−ln m�. The usual Gumbel distribution corresponds to m=1,

whereas the Gaussian can be formally recovered in the limit
m→�. This choice was motivated by the numerical finding
that the rescaled probability distribution as measured via
simple sampling could be fitted extremely well by a gener-
alized Gumbel distribution gm�x� of parameter m�6 �9,10�.
It turns out that many recent studies in various contexts have
found that asymmetric distributions could be extremely well
fitted by generalized Gumbel distributions with various non-
integer values of m �29–32�. This has motivated theoretical
studies to understand the origin of this type of distribution

FIG. 1. �Color online� Logarithmic plot of the rescaled probabil-
ity distribution Pd�x� �Eq. �1�� as measured via simple sampling for
�a� L=12,50,200,800 in d=1; �b� L=10,40,160 in d=2; �c� L
=6,18,36 in d=3.
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�33�. However as discussed in Ref. �29�, it is empirically
known that probability distribution functions �PDF� with the
same first four moments approximately coincide over the
range of a few standard deviations which is precisely the
range of numerical—or experimental—data. So generalized
Gumbel PDF’s, with arbitrary m, should not be considered
more than a convenient one parameter fit. To demonstrate
clearly how misleading these fits can be, we show in Fig. 2
how the Tracy-Widom GOE distribution PTW

GOE �which repre-
sents the exact rescaled distribution for the directed polymer
model in d=1 �19–21�� can be fitted by generalized Gumbel
distributions on the three ranges P�10−10, P�10−20, and
P�10−30: the best fit corresponds to increasing values of the
parameter m. For the first range P�10−10, the found fit is
“perfect,” whereas a slight difference begins to appear in the
negative tail as the range grows. Moreover, the Tracy-Widom
distribution is known to have the following asymptotic be-
havior:

PTW
GOE�x� �

x→−�
e−c1�x��1 with �1 =

3

2
, �24�

whereas the generalized Gumbel distribution has for any m
an exponential tail with exponent �=1 and coefficient m

gm�x� �
x→−�

e−m�x�. �25�

This explains why the effective m of the best fit grows with
the range. In conclusion, whenever the fit of the core of the
distribution leads to an effective m which grows with the
range, as in the SK model where m�6 and m�11 were
found depending on the range �9,10�, the PDF is probably
not a generalized Gumbel distribution, but is likely to have a
negative tail exponent ��1 �as already suggested around
Eq. �21� using Zhang’s argument�. And if one focuses on the
negative tail, it is clear that the fit with a simple exponential
�25� is very restrictive.

FIG. 2. �Color online� Fits of the GOE Tracy-Widom distribution ln PTW
GOE�x� by generalized Gumbel distributions ln gm�x� �Eq. �23�� on

various intervals: �a� fit on �−5,3.7� corresponding to ln P�−10 with m=12.93, �b� fit on �−8,5� corresponding to ln P�−20 with m
=14.71, �c� fit on �−10,6� corresponding to ln P�−30 with m=15.92.
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As a consequence, in the following where we focus on the
negative tail x�−1 for the directed polymer, we have chosen
not to work with the generalized Gumbel distribution, but to
construct a guiding function G�E� which fits the simple sam-
pling data and whose leading behavior involves the negative
tail exponent �d as obtained from Zhang’s argument �see
Eqs. �17�–�19��. In practice, we have found it convenient to
work in d=2 and d=3 on the range x� �−10,−1� with some
guiding function Gd�x� of the form

ln Gd�x� = a0 − a1�x��d + a2 ln�x� , �26�

where the three parameters ai�d� were chosen to fit best the
simple sampling data.

C. Importance sampling with the guiding function G„E…

The importance-sampling Monte Carlo algorithm pro-
posed in Ref. �10� is defined by the following Markov chain.

�1� From the current disorder configuration Di, construct a
candidate D� for the next disorder configuration Di+1 by re-
placing a subset of Di chosen at random with new values
drawn with the original disorder distribution. For a spin
model of N spins, this subset can be for instance a single
bond chosen at random, or all bonds connected to a site
chosen at random, so that the proposed change in the ground
state energy is of order O�1� with respect to a value of order
E0�N�=Ne0+¯, i.e., its relative order of magnitude is of
order 1 /N �10�. For the directed polymer studied here, we
have chosen for this subset the energies of a whole time
slice, i.e., all the disorder variables seen by a given mono-
mer. Then the proposed change in the ground-state energy is
of order O�1� with respect to a value of order E0�N�=Ne0

+¯ as in spin models.
�2� Calculate the new ground-state energy E�D�� and

compare it with the previous ground-state energy E�Di� us-
ing the guiding function G�E�: set Di+1=D� with probability

paccept�D��Di� = min� G„E�Di�…
G„E�D��…

,1� �27�

and set Di+1=Di otherwise.
This Markov chain is expected to converge towards a sta-

tionary state where a disorder configuration D is visited with
probability �1/G(E�D�). The stationary probability to visit a
disorder configuration with energy E is now given by the
ratio

Rstationary�E� =
P�E�
G�E�

. �28�

If the guiding function G�E� were the exact P�E�, this would
correspond to a flat-histogram sampling of P�E�. If G�E� is
just a reasonable extrapolation of the simple sampling result
Psimple�E�, one expects to measure nevertheless much better
the tails of P�E�.

�3� Measurements from the Monte Carlo procedure: Since
successive configurations visited by a Monte Carlo algorithm
are not independent, one usually keeps only decorrelated
configurations for the numerical measure Rimportance�E� of the

theoretical stationary solution Rstationary�E�. This means in
practice that one should first estimate some typical correla-
tion time � and use only every �th configuration

Rimportance
��� �E� =

1

mI


j=1

mI

�„E − E�Di+j��… , �29�

where the number mI of measured points is simply the ratio
mI=

T
� of the total number T of Monte Carlo iterations by the

correlation time �. For instance, in Ref. �10�, the time � was
chosen to be �=4�e where �e is the time where the autocor-
relation of the ground-state energy

C�t� =

EiEi+t� − 
Ei�
Ei+t�


Ei
2� − 
Ei�2 �30�

decays to 1/e. For the SK model with 16�N�128 spins,
the autocorrelation time was found to be of order of 400–700
MC steps �10�.

For the directed polymer, we actually find that the histo-
grams Rimportance

��� �E� obtained for �=1 and ���e coincide,
except that the histograms with large � contain more noise
since they are built out of less events. From a theoretical
point of view, one can justify this finding as follows: if the
total Monte Carlo time T is much bigger than the typical time
tcross to cross the interval �Emin,Emax�, then the average with
respect to the stationary measure should be equivalent to the
time average of the Monte Carlo procedure where all times
are kept

� dEf�E�Pstationary�E� =
1

T


t=1

T

f„E�t�… for T � tcross.

�31�

Indeed for a free random walk in a finite box, it seems clear
that one obtains the flat histogram via measuring the posi-
tions at all times, instead of throwing away most of the times
to have independence between two consecutive measures.
The quality of the convergence towards the stationary distri-
bution then depends on the number

ncross �
T

tcross
�32�

of crossings of the interval �Emin,Emax� during the total num-
ber T of the Monte Carlo, which should be large enough
ncross�1.

D. Summary of the procedure used for the directed polymer

In the following sections, we will present the results for
the ground-state energy distribution obtained by combining
�i� the Monte Carlo procedure in the disorder discussed
above and �ii� the transfer matrix calculation of the ground-
state energy in each sample �12� with a free boundary con-
dition for the end polymer. We have chosen to focus on the
negative tail, by working on the same finite box x
� �xmin,xmax� in terms of the rescaled variable x �Eq. �1�� for
all sizes L. We now present our results for d=1,2 ,3, respec-
tively.
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IV. MEASURE OF THE GROUND-STATE ENERGY
DISTRIBUTION IN d=1

In d=1, the exact rescaled distribution of the ground-state
energy is exactly known and corresponds to the Tracy-
Widom GOE distribution PTW

GOE �19–21� if the last monomer
is free, the case we consider here. �It would be the Tracy-
Widom GUE distribution PTW

GUE if the last monomer were
fixed at the origin.� We use this exact result to check the
validity of the Monte Carlo procedure in the disorder and to
describe its main properties.

A. Numerical details

In dimension d=1, we have chosen to work on the inter-
val �xmin,xmax�= �−11.0,−1.0� for the rescaled variable x �Eq.
�1��, i.e., to probe the negative tail up to probabilities of
order P1�x��10−32. We now give the sizes L we have stud-
ied, together with the standard deviation �E0�L� measured
by simple sampling and used in the rescaling of Eq. �1� �the
averaged values E0

av�L� can be found in our previous work
�16��, the corresponding number TL of Monte Carlo itera-
tions, the acceptance rate �acc�L� of Monte Carlo moves, and
the number ncross�L� of crossings of the box �xmin,xmax�
= �−11.0,−1.0�.

L = 50,100,200,400,800,1600, �33�

�E0�L� � 3.12,3.98,5.04,6.36,8.04,10.11, �34�

TL = 33 � 108,85 � 107,225 � 106,57 � 106,

7 � 106,4 � 106, �35�

�acc�L� � 0.54,0.64,0.72,0.76,0.82,0.86, �36�

ncross�L� � 98 � 104,224 � 103,45 � 103,8 � 103,670,230.

�37�

As L grows, the proposed Monte Carlo moves �x in the
rescaled variable x �Eq. �1�� are smaller: this is why both the
acceptance rate �acc�L� and the crossing time tcross�L� �Eq.
�32�� also grows with L. The final result is that the number of
crossing ncross�L� decays with L, and since it should remain
large enough to obtain a good measure �Eq. �32��, this num-
ber fixes the maximal size that can be correctly studied.

B. Properties of the Monte Carlo process
in the disorder

We show in Fig. 3 the histograms of the proposed and
accepted Monte Carlo changes in the disorder, for L=25 and
for L=1600, respectively. The proposed changes are biased
towards �x�0, because here, in the negative tail, a Monte
Carlo step �x�0 corresponds to a move where the probabil-
ity P�x� is bigger. The histogram of the accepted moves is on
the contrary almost symmetric around �x=0 in order to gen-
erate a nonbiased random walk. For �x
0, the two histo-
grams almost coincide, i.e., a move �x
0 is almost always
accepted. As the size L grows, the proposed moves in the

relative variable x are smaller, and as a consequence, the
acceptance rate grows with L.

The resulting process x�t� are shown on Fig. 4 for the first
1� t�10 000 Monte Carlo iterations, for L=50 and L=200,
respectively. The time tcross needed to cross the interval
�xmin,xmax�= �−11,−1� grows with L.

C. Convergence towards the exact Tracy-Widom distribution

In Fig. 5�a�, we show the relative histogram PL�x� /
PTW

GOE�x� of the measured PL�x� via the Monte Carlo proce-
dure as L grows with respect to the Tracy-Widom GOE dis-
tribution that represents the asymptotic exact result for
L→�: these relative histograms become flatter as L grows.
In Fig. 5�b�, we show for comparison �i� the simple sampling

FIG. 3. �Color online� Monte Carlo procedure to measure the
negative tail on x� �−11,−1� in d=1: histograms of the proposed
and accepted Monte Carlo changes �x in the disorder �a� for L
=25 where the acceptance rate is �acc�0.425 and �b� for L=1600
where the acceptance rate is �acc�0.86.
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histogram for L=1600, �ii� the importance-sampling measure
of the tail on x� �−11,−1� for L=1600, and �iii� the exact
Tracy-Widom GOE distribution. Our conclusion is thus that
the Monte Carlo in the disorder is a very efficient method to
probe accurately the tails, since they allow us to reproduce
the exact result on the range x� �−11,−1� for sizes up to L
=1600.

D. Extraction of the negative tail exponent value

Let us now make some comments on the extraction of the
negative tail exponent value. The exact Tracy-Widom GOE
distribution PTW

GOE�x� has for negative exponent �1=3/2.
However, the following fits of this distribution PTW

GOE�x� on
the finite range x� �−11,−1� give slightly larger values: �i�
the fit of �ln PTW

GOE�x�� by a−b�−x��1 containing three param-
eters yields �1�1.58 and �ii� the fit of �ln PTW

GOE�x�� by a
−b�−x��1 +c ln�−x� containing four parameters yields �1

�1.54. This shows that the extracted value of the negative

tail exponent from data on the finite range x� �−11,−1� is
not very precise if there is no information on the subleading
terms. Similarly in higher d below, we expect that the Monte
Carlo procedure gives very accurate data on the range where
the tail is measured, but that the extraction of the negative
tail exponent value suffers from some error directly related
to the range that is probed.

V. RESULTS FOR THE GROUND-STATE ENERGY
DISTRIBUTION IN d=2

A. Numerical details

In dimension d=2, we have chosen to work on the inter-
val �xmin,xmax�= �−10.0,−1.0� for the rescaled variable x �Eq.

FIG. 4. Monte Carlo procedure to measure the negative tail on
x� �−11,−1� in d=1: process x�t� during the first 1� t�10 000
Monte Carlo iterations �a� for L=50, �b� for L=200.

FIG. 5. �Color online� Monte Carlo procedure to measure the
negative tail on x� �−11,−1� in d=1: �a� relative histogram 	L�x�
= PL�x� / PTW

GOE�x� with respect to the exact guiding function: conver-
gence towards the flat histogram as L grows: L=200 �dashed line�,
400, 800, 1600 �thick line�. �b� Logarithmic plot of the negative tail
of the probability distribution P1�x�, as compared to simple sam-
pling result for L=1600. The exact Tracy-Widom distribution is
also shown �thin line� to demonstrate the validity of the Monte
Carlo procedure.
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�1��, i.e., to probe the negative tail up to probabilities of
order P1�x��10−23. We now give the sizes L we have stud-
ied, together with the standard deviation �E0�L� measured
by simple sampling and used in the rescaling of Eq. �1� �the
averaged values E0

av�L� can be found in our previous work
�16��, the corresponding number TL of Monte Carlo itera-
tions, the acceptance rate �acc�L� of Monte Carlo moves

L = 20,40,80,120,160, �38�

�E0�L� � 1.58,1.85,2.18,2.40,2.54, �39�

TL = 125 � 107,27 � 107,47 � 106,34 � 105,

64 � 104,21 � 104, �40�

�acc�L� � 0.24,0.28,0.38,0.47,0.5,0.54. �41�

B. Monte Carlo results

In Fig. 6�a�, we show the process x�t� during the first
10 000 Monte Carlo iterations for L=120. In Fig. 6�b�, we
compare the importance-sampling measure of the negative
tail with respect to the simple sampling evaluation.

C. Negative tail exponent �d=2

From the point of view of the convergence in L towards a
fixed distribution, we find that the negative tail measured for
the two bigger sizes L=120 and L=160 nearly coincide on
the whole interval �xmin,xmax�= �−10.0,−1.0� under study
�whereas our results for the smaller sizes do not�.

As explained previously in Sec. IV D for the case d=1,
the error on the estimated value of the negative tail exponent
is due to the range �xmin,xmax�= �−10.0,−1.0� over which the
fits are made. As in Sec. IV D, we have tried to fit our result
for �ln P2�x�� as measured for the sizes L=120 and L=160
by the two following fits, with or without power-law correc-
tions with respect to the leading exponential term �i� the first
fit a−b�−x��2 containing three parameters yields �2�1.4
and �ii� the second fit by a−b�−x��1 +c ln�−x� containing
four parameters yields �2�1.3. Our conclusion is thus that
the extracted value of the negative tail exponent from our
data on the finite range x� �−10,−1� is not very precise in
the absence of information on the subleading terms, but is
compatible with the value �2

Z=1.32 predicted by Zhang’s ar-
gument �see Eqs. �17� and �19��.

VI. RESULTS FOR THE GROUND-STATE ENERGY
DISTRIBUTION IN d=3

A. Numerical details

In dimension d=3, we have chosen to work on the inter-
val �xmin,xmax�= �−10.0,−1.0� for the rescaled variable x �Eq.
�1��, i.e., to probe the negative tail up to probabilities of
order P1�x��10−21. We now give the sizes L we have stud-
ied, together with the standard deviation �E0�L� measured
by simple sampling and used in the rescaling of Eq. �1� �the
averaged values E0

av�L� can be found in our previous work

�16��, the corresponding number TL of Monte Carlo itera-
tions, the acceptance rate �acc�L� of Monte Carlo moves, and
the number ncross�L� of crossings of the box �xmin,xmax�
= �−10.0,−1.0�.

L = 12,24,36,48,60,72, �42�

�E0�L� � 1.15,1.30,1.39,1.46,1.52,1.55, �43�

TL = 64 � 106,43 � 105,75 � 104,95 � 104,

34 � 104,182 � 103, �44�

�acc�L� � 0.24,0.27,0.32,0.34,0.36,0.37, �45�

ncross�L� � 20 000,2400,300,522,166,94. �46�

FIG. 6. �Color online� Monte Carlo procedure to measure the
negative tail on x� �−10,−1� in d=2 for L=120: �a� process x�t�
during the first 1� t�10 000 Monte Carlo iterations, �b� logarith-
mic plot of the negative tail of the probability distribution P2�x�, as
compared to a simple sampling result.
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B. Monte Carlo results

In Fig. 7�a�, we show the process x�t� during the first
10 000 Monte Carlo iterations for L=72. In Fig. 7�b�, we
compare the importance sampling measure of the negative
tail with respect to the simple sampling evaluation.

C. Negative tail exponent �d=3

As in Sec. IV D, we have tried to fit our result for
�ln P3�x�� by the two following fits, with or without power-

law corrections with respect to the leading exponential term:
�i� the first fit a−b�−x��3 containing three parameters yields
�3�1.25 and �ii� the second fit by a−b�−x��1 +c ln�−x� con-
taining four parameters yields �3�1.15.

Our conclusion is that the extracted value of the negative
tail exponent from our data on the finite range x� �−10,
−1� is not very precise in the absence of information on the
subleading terms, but is compatible with the value �3

Z=1.23
predicted by Zhang’s argument �see Eqs. �17� and �19��.

VII. CONCLUSION

In this paper, we have adapted the importance-sampling
method in the disorder proposed in Ref. �10� for spin glasses,
to measure with high precision the negative tail of the
ground-state energy distribution Pd�E0� for the directed poly-
mer in a random medium of dimension d=1,2 ,3. In d=1,
we have checked the validity of the procedure by a direct
comparison with the exact result, namely, the Tracy-Widom
GOE distribution. In dimensions d=2 and d=3, we have
measured the negative tail up to P�10−22. Our results are in
agreement with Zhang’s argument, stating that the negative
tail exponent ��d� of the asymptotic behavior ln P�E0��
−�E0���d� as E0→−� is directly related to the fluctuation ex-
ponent ��d� via the simple formula ��d�=1/ �1−��d��.

Along the paper, we have also discussed the similarities
and differences with spin glasses. In particular, we have ar-
gued that the application of Zhang’s argument for the
Sherrington-Kirpatrick model of spin glasses points towards
an asymptotic distribution which is not a generalized Gum-
bel distribution gm�x�, in contrast with the current way of
fitting the numerical data �9,10�, but involves instead some
nontrivial negative tail exponent �SK�1 directly related to
the fluctuation exponent �Eq. �21��. The fact that the fitting
value m of generalized Gumbel distribution gm�x� depends
on the probed range in the variable x �m�6 via simple sam-
pling �9� and m�11 via importance sampling �10�� also
points towards �SK�1. More generally, we have explained
in details how fits with generalized Gumbel distributions of
the core of the distribution could be very misleading if one is
interested in the tails, since all Gumbel distributions corre-
spond to the exponent �=1, which is very restrictive.

Finally, our conclusion concerning the algorithm is that
the importance-sampling Monte Carlo Markov chain in the
disorder introduced in Ref. �10� is a very efficient method to
probe precisely the tails of probability distributions over the
samples. In the field of disordered systems, this Monte Carlo
procedure will be very useful to study probability distribu-
tions of other observables in addition to the ground-state
energy. Note that it has already been used in the fields of
sequence alignments �34� and random graphs �35�.

FIG. 7. �Color online� Monte Carlo procedure to measure the
negative tail on x� �−10,−1� in d=3 for L=72: �a� process x�t�
during the first 1� t�10 000 Monte Carlo iterations, �b� logarith-
mic plot of the negative tail of the probability distribution P3�x�, as
compared to simple sampling result.
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